Algorithms for Characterization and Trend Detection in Spatial Databases

نویسندگان

  • Martin Ester
  • Alexander Frommelt
  • Hans-Peter Kriegel
  • Jörg Sander
چکیده

The number and the size of spatial databases, e.g. for geomarketing, traffic control or environmental studies, are rapidly growing which results in an increasing need for spatial data mining. In this paper, we present new algorithms for spatial characterization and spatial trend analysis. For spatial characterization it is important that class membership of a database object is not only determined by its non-spatial attributes but also by the attributes of objects in its neighborhood. In spatial trend analysis, patterns of change of some non-spatial attributes in the neighborhood of a database object are determined. We present several algorithms for these tasks. These algorithms were implemented within a general framework for spatial data mining providing a small set of database primitives on top of a commercial spatial database management system. A performance evaluation using a real geographic database demonstrates the effectiveness of the proposed algorithms. Furthermore, we show how the algorithms can be combined to discover even more interesting spatial knowledge.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Knowledge Discovery in Spatial Databases

Both, the number and the size of spatial databases, such as geographic or medical databases, are rapidly growing because of the large amount of data obtained from satellite images, computer tomography or other scientific equipment. Knowledge discovery in databases (KDD) is the process of discovering valid, novel and potentially useful patterns from large databases. Typical tasks for knowledge d...

متن کامل

Introducing An Efficient Set of High Spatial Resolution Images of Urban Areas to Evaluate Building Detection Algorithms

The present work aims to introduce an efficient set of high spatial resolution (HSR) images in order to more fairly evaluate building detection algorithms. The introduced images are chosen from two recent HSR sensors (QuickBird and GeoEye-1) and based on several challenges of urban areas encountered in building detection such as diversity in building density, building dissociation, building sha...

متن کامل

Investigation and analysis of cycles and spatial correlation model of Iranian monthly rainfalls

The purpose of this study is to analyze and analyze Iran's precipitation over the past half-century(1967-2017). For this purpose, the average monthly rainfall of Iran during the statistical period of 50 years was extracted from Esfazari databases (Which is provided using data from 283 stations of Synoptic and Climatology). Regression analysis was used to analyze the trend and to analyze the ann...

متن کامل

Density-Connected Sets and their Application for Trend Detection in Spatial Databases

Several clustering algorithms have been proposed for class identification in spatial databases such as earth observation databases. The effectivity of the well-known algorithms such as DBSCAN, however, is somewhat limited because they do not fully exploit the richness of the different types of data contained in a spatial database. In this paper, we introduce the concept of density-connected set...

متن کامل

Novel Automated Method for Minirhizotron Image Analysis: Root Detection using Curvelet Transform

In this article a new method is introduced for distinguishing roots and background based on their digital curvelet transform in minirhizotron images. In the proposed method, the nonlinear mapping is applied on sub-band curvelet components followed by boundary detection using energy optimization concept. The curvelet transform has the excellent capability in detecting roots with different orient...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998